Fedosov Quantization of Lagrange–Finsler and Hamilton–Cartan Spaces and Einstein Gravity Lifts on (Co) Tangent Bundles
نویسندگان
چکیده
We provide a method of converting Lagrange and Finsler spaces and their Legendre transforms to Hamilton and Cartan spaces into almost Kähler structures on tangent and cotangent bundles. In particular cases, the Hamilton spaces contain nonholonomic lifts of (pseudo) Riemannian / Einstein metrics on effective phase spaces. This allows us to define the corresponding Fedosov operators and develop deformation quantization schemes for nonlinear mechanical and gravity models on Lagrange– and Hamilton–Fedosov manifolds.
منابع مشابه
Deformation Quantization of Almost Kähler Models and Lagrange–Finsler Spaces
Finsler and Lagrange spaces can be equivalently represented as almost Kähler manifolds endowed with a metric compatible canonical distinguished connection structure generalizing the Levi Civita connection. The goal of this paper is to perform a natural Fedosov– type deformation quantization of such geometries. All constructions are canonically derived for regular Lagrangians and/or fundamental ...
متن کاملFinsler and Lagrange Geometries in Einstein and String Gravity
We review the current status of Finsler–Lagrange geometry and generalizations. The goal is to aid non–experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Finsler and Kähler g...
متن کاملFinsler–Lagrange Geometries and Standard Theories in Physics: New Methods in Einstein and String Gravity
In this article, we review the current status of Finsler–Lagrange geometry and generalizations. The goal is to aid non–experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Fin...
متن کاملGravity as a Nonholonomic Almost Kähler
A geometric procedure is elaborated for transforming (pseudo) Riemanian metrics and connections into canonical geometric objects (metric and nonlinear and linear connections) for effective Lagrange, or Finsler, geometries which, in their turn, can be equivalently represented as almost Kähler spaces. This allows us to formulate an approach to quantum gravity following standard methods of deforma...
متن کاملEinstein Gravity as a Nonholonomic Almost Kähler Geometry, Lagrange–finsler Variables, and Deformation Quantization
A geometric procedure is elaborated for transforming (pseudo) Riemanian metrics and connections into canonical geometric objects (metric and nonlinear and linear connections) for effective Lagrange, or Finsler, geometries which, in their turn, can be equivalently represented as almost Kähler spaces. This allows us to formulate an approach to quantum gravity following standard methods of deforma...
متن کامل